

K-FLEX®

Urethane Diol Selection Guide

For High Performance VOC Compliant Coatings

The aliphatic urethane backbone of *K-FLEX Urethane Diols* provides excellent light stability. It also allows the incorporation of aliphatic urethane functionality without the use of isocyanates. The urethane diols are used primarily as modifiers for melamine and isocyanate crosslinked coatings. They are compatible with polyester, polyether, acrylic and alkyd resins.

Blocked Isocyanates **2K Polyurethanes**

Amino Crosslinked Systems
Prepolymer Synthesis

K-FLEX urethane diols are soluble in most polar organic solvents and in water. They are not soluble in more hydrophobic solvents like aliphatic or aromatic hydrocarbons. However, varying levels of hydrophobic solvents can be tolerated depending on the solubility parameters of the other solvents present.

Advantages in Waterborne Coatings

K-FLEX Urethane Diols act as cosolvents by reducing the viscosity of the system. They can be used to replace volatile cosolvents in order to increase solids, increase crosslink density, improve flow and leveling and yield higher gloss.

Additionally, K-FLEX urethane diols enable the reduction or replacement of amine in the coating, resulting in lower VOC and faster cure of melamine baking systems.

W Higher hardness

- Excellent chemical resistance
- Improved wet adhesion

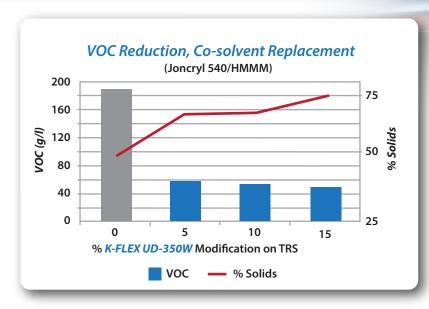
- Lower VOC (higher solids)
- Excellent hydrolytic stability
- Excellent gloss

K-F Product	EX Supplied	Hydroxyl # On Solids	Viscosity 25°C (cPs)	Attributes / Uses
UD-350W	88% active urethane diol in water for WB coatings	350	4,000	Higher solids, improved flow, gloss, hardness and resistance properties.
UD-320	82% active urethane diol for SB coatings	350	9,000	Increases application solids and hardness. Improves chemical resistance, exterior durability and hydrolytic stability.
UD-320-100	100% active urethane diol	350	7,000 at 50°C	Prepolymer synthesis. For water or solvent. Preparation of polyester urethanes.
XM-386	100% active urethane diol for SB and WB coatings	390	45,000	All primary hydroxyl groups. Excellent low temperature cure response. Good moisture resistance.

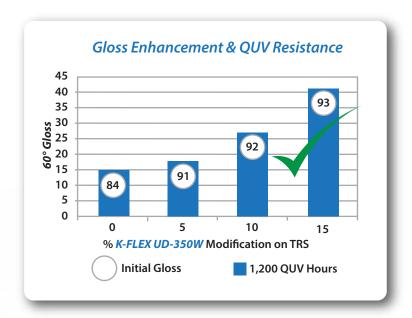
Formulating with K-FLEX® UD-350W for Waterborne Coatings

K-FLEX UD-350W is an aqueous solution of an aliphatic, low molecular weight urethane diol oligomer. It is recommended as a modifier for amino crosslinked water soluble and emulsified acrylic, alkyd, urethane and polyester resins. It is used to increase solids, increase crosslink density and to improve film/resistance properties and flow/leveling.

King Formulation UDW-12


Grind	Description	Pounds
Joncryl ¹ 540	Acrylic Emulsion	41.8
AMP ² 95	Amine	1.0
Surfynol ³ 104 (Versum)	Wetting Agent	1.0
Ti-Pure⁴ R-960	Rutile TiO₂	48.6
Water	Diluent	48.6

Acrylic Melamine Emulsion Performance


Urethane diol modification of a white acrylic/melamine emulsion (below) demonstrated several advantages, including improved flow/leveling, resulting in higher gloss, improved gloss retention, higher solids (lower VOC) and improved resistance properties seen below.

Modification levels of 5, 10 and 15% were evaluated. Optimum levels of 5 and 10% are detailed below and on *Page 4*.

Water	2.1.6.6.1.0				
Letdown	Letdown Description Acrylic Control			K-FLEX Modification	
Acrylic/K-FLEX/HMMM	Composition %	70/0/30	65/5/30	57/10/33	
Grind	See Grind	100	100	100	
Joncryl 540	Acrylic Emulsion	58.3	50.9	39.1	
НМММ	Crosslinker	19.9	19.9	29.1	
2-Butoxyethanol	Solvent	11.4	-	-	
K-FLEX UD-350W	Urethane Polyol Modifier	-	3.6	7.2	
NACORR® 1552	Corrosion Inhibitor and Accelerator	1.3	1.3	1.3	
Water	Diluent	43	23	25	
Total		233.9	198.7	201.7	

K-FLEX UD-350W urethane diol provides improved wetting over various substrates, as well as improved flow and leveling. The end result is higher gloss waterborne coatings.

K-FLEX UD-350W - Waterborne Performance

The urethane backbone of the urethane diols provides excellent hydrolytic stability for long term storage in waterborne formulations. This excellent hydrolytic stability also provides improvements in the humidity, salt spray and boiling water resistance of fully crosslinked films. The results shown demonstrate these improvements in water reducible polyester/HMMM baking enamel.

King Formula	Humidity Resistance (350 hrs)	Salt Spray Resistance (350 hrs) Blisters*	Salt Spray Resistance (350 hrs) mm Creep	Boiled Water Resistance (1 hour) Blisters*	
HMMM Crosslinked Baking Enamel					60° Gloss % Reflectance
Polymac⁵ WR 72-7203	Control	5	4D	2	8D
Water Reducible Polyester (UDW-16)	K-FLEX UD-350W % on TRS	59	4 F	1	10 No Attack

*Blister Rank (ASTM D714): 10 = no blister, 1 = large blisterD = Dense, M = Medium, F = Few **K-FLEX UD-320** is a high solids, aliphatic, low molecular weight urethane diol. It is soluble in polar organic solvents and has broad compatibility with acrylic, polyester and alkyd resins. When used to modify a 2-component polyurethane, it will increase hardness and flexibility.

K-FLEX UD-320 will increase the hardness and humidity resistance of a melamine crosslinked system. Typical applications include general industrial and automotive OEM coatings.

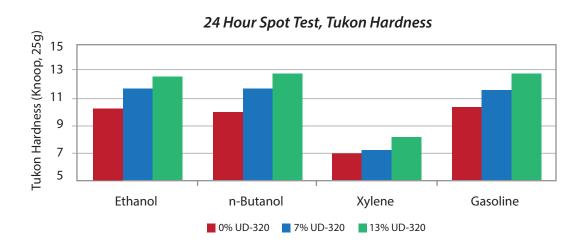
The formulation below illustrates the effect of K-FLEX UD-320 diol modification of a high solids automotive acrylic melamine coating. Benefits include higher solids, higher hardness and improved adhesion, chemical resistance, gloss and Florida exposure.

King Formulation UD-3

Material	Description	Acrylic Control	K-FLEX U 7%	D-320 Mod 13%	dification 19%
Acrylic Resin	Acrylic Resin	64.2	57.2	50.2	43.5
K-FLEX	Urethane Diol	-	5.2	10.3	15.3
НМММ	Crosslinker	20.9	22.8	24.7	26.6
NACURE® 5528	Blocked Catalyst	1.3	1.3	1.4	1.4
DISPARLON® L-1985-50	Leveling Agent	0.2	0.2	0.2	0.2
Xylene	Solvent	10.7	10.6	10.6	10.4
Methanol	Solvent	2.7	2.7	2.6	2.6
Total		100	100	100	100
Characteristics					
Acrylic / K-FLEX / Mel		69/0/31	61/7/32	52/13/35	44/19/37
60 min., 110°C % Solids		61.6	62.4	63.5	63.5
Viscosity, 25°C (cPs)		156	158	156	157

Cure & Application Conditions

Cure Schedule: 20 min / 120°C


Dry Film Thickness: 37.5μ

Substrate: Iron Phosphated CRS

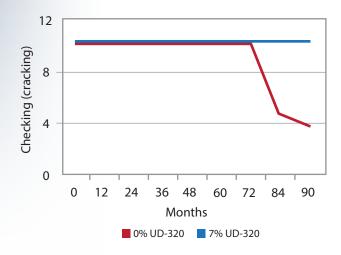
FILM PROPERTIES	Control	7%	13%	19%
Pencil Hardness, Cycles	F-H	F-H	H-2H	H-2H
% Crosshatch Adhesion	0	20	90	100
Reverse impact, in-lbs	10-20	10-20	10-20	20-40
Direct impact, in-lbs	10-20	40-60	40-60	60-80

The control formulation was modified with 7% and 13% *K-FLEX UD-320* for testing chemical resistance. With each modification level, we increased the melamine content slightly, to accommodate the high hydroxyl number of the K-FLEX UD-320.

A 24 hour spot test was conducted to evaluate the chemical resistance to ethanol, n-butanol, xylene and gasoline. For each of these solvents tested, we see an improvement in the chemical resistance with a K-FLEX UD-320 modification. In addition, the chemical resistance increases with modification level.

Florida Exposure Study - Gloss Retention & Crack Resistance

60° Gloss Results - Florida Exposure (7.5 years)


Modification with 7% **K-FLEX UD-320** drastically improved long term gloss stability in harsh environments as shown in the chart to the right.

Florida Exposure - Checking (crack) Resistance

The chart to the right demonstrates improved checking resistance with **K-FLEX UD-320** modification versus the acrylic control after 90 months (7.5 years) exposure in Florida at 5° South without UV stabilizers.

Modification at the 7% level provided the best overall cracking resistance.

K-FLEX® Urethane Diol Selection Guide

Notes:		
Notes.		
		- 1

Trademark References

1. Joncryl	BASF
2. AMP	Dow
3. Versum	Evonik
4. Ti-Pure	Chemours
5. Polymac	Polynt

Contact Information

Global Headquarters Tech. Service, R&D, and Sales

King Industries, Inc. 1 Science Rd. Norwalk, CT 06852, USA

Phone: 1-203-866-5551

European Tech. Sales Office

King Industries, International Science Park 402 1098 XH Amsterdam The Netherlands Phone: 31 20 723 1970

Asia-Pacific Tech. Sales Office

Synlico Tech Co., Ltd. 42 Ju Lin Ya Yuan RichMond Hill (Juhaoyuan) Zhongshan, China Phone: 86 760 88229866

www.kingindustries.com

The conditions of your use and application of our products, technical assistance and information (whether verbal, written or by way of product evaluations), including any suggested formulations and recommendations, are beyond our control. Therefore, it is imperative that you test our products, technical assistance and information to determine to your own satisfaction whether they are suitable for your intended uses and applications. Such testing has not necessarily been done by King Industries, Inc. ("King"). The facts, recommendations and suggestions herein stated are believed to be reliable; however, no guaranty or warranty of their accuracy is made. EXCEPT AS STATED, THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS OR OTHERWISE. KING SHALL NOT BE HELD LIABLE FOR SPECIAL, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES. Any statement inconsistent herewith is not authorized and shall not bind King. Nothing herein shall be construed as a recommendation to use any product(s) in conflict with patents covering any material or its use. No license is implied or granted under the claims of any patent. Sales or use of all products are pursuant to Standard Terms and Conditions stated in King sales documents.