K-PURE®
Specialty Additives
For Electronic Applications
K-PURE TAG and CXC blocked acids are particularly effective for accelerating and lowering the activation temperature of stable, one component systems based on; aminoplast, glycoluril, siloxane, silanol and phenoxy condensation reactions as well as epoxy homopolymerization and co-polymerization with polyols, vinyl ethers, oxetane and anhydride resins. Blocking techniques and features are described below.

Amine Blocked Acids
- Solubility in water and polar solvents
- Broad activation temperature range
- Volatile by-product

\[
\begin{align*}
\text{O} & \text{SR} \\
\text{O} & \text{O} \\
\text{R}_1 & \text{N} \\
\text{R}_2 & \text{R}_3
\end{align*}
\]

Covalently Blocked Acids
- No volatile by-products
- Narrower solubility range (hydrophobic)
- Solvent based

\[
\begin{align*}
\text{O} & \text{SR} \\
\text{O} & \text{O} \\
\text{R}_1 & \text{+} \\
\text{H} & \\
\text{N} & \\
\text{R}_2 & \text{ArH}
\end{align*}
\]

Metal Blocked Acids
- Mono and divalent metals
- Surface active compounds
- Hydrophobic and hydrophilic
- Corrosion inhibition with catalytic behavior

\[
\begin{align*}
\text{O} & \text{SR} \\
\text{O} & \text{O} \\
\text{Me}^+ & \text{or} \text{Me}^{2+}
\end{align*}
\]

Quaternary Blocked Acids
- Broad control over activation range
- 100% solids - white powders
- Narrower solubility range (hydrophobic)
- No volatile component

\[
\begin{align*}
\text{R}_1 & \text{R}_2 \\
\text{R}_3 & \text{ArH}
\end{align*}
\]

K-PURE CDR - Resin Modifiers

K-PURE resin modifiers offer formulators three core chemistries that can be used to improve mechanical properties, crosslinking density and resistance properties.

Core chemistries include unique ester diols with low molecular weight and very narrow molecular weight distribution, urethane diols with an aliphatic urethane backbone and an acetoacetate functional reactive diluent.

Ester Diols
- Improve Flexibility
- Reduce Modulus

Urethane Diols
- Improve Chemical Resistance
- Improve Adhesion

Acetoacetates (AA)
- Improve Adhesion
- Improve Corrosion Resistance

K-PURE CDI - Corrosion Inhibitors

K-PURE corrosion inhibitors represents a broad range of core chemistries for the protection of ferrous and non-ferrous metals. Most common applications and system dependency are found below.

Sulfonic Acids
- Potting Compounds
- Cleaners & Strippers

Phosphate
- Cleaners & Strippers
- Adhesives
- Potting Compounds

Amino Acid Derivatives
- Cleaners & Strippers
- CMP Slurries
- Adhesives
- Potting Compounds

Triazole Derivatives
- Cleaners & Strippers
- CMP Slurries
- Wire
- Adhesives
- Potting

Acetoacetate
- Adhesives
- Potting Compounds

K-PURE CDR Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Amino</th>
<th>Isocyanate</th>
<th>Silanol</th>
<th>Solvent</th>
<th>Solventless</th>
<th>Water</th>
<th>Epoxy</th>
<th>Epoxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ester Diols</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Urethane Diols</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Acetoacetates (AA)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

*K-PURE CDI types: *Anionic **Cationic*
<table>
<thead>
<tr>
<th>Block Type</th>
<th>Min. Activation Range, °C</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAG-2713</td>
<td>120-140</td>
<td>Amine, Solvent-based, low color</td>
</tr>
<tr>
<td>CXC-1820</td>
<td>120-140</td>
<td>Amine, Water-based, low color</td>
</tr>
<tr>
<td>TAG-2172</td>
<td>120-140</td>
<td>Amine, Low color, more hydrophobic</td>
</tr>
<tr>
<td>TAG-2179</td>
<td>160-180</td>
<td>Amine, Low color, more hydrophobic</td>
</tr>
<tr>
<td>TAG-2507</td>
<td>120-140</td>
<td>Covalent, Hydrophobic</td>
</tr>
<tr>
<td>CXC-1767</td>
<td>110-140</td>
<td>Amine, Low color, alternative to pTSA where sublimation is concern</td>
</tr>
<tr>
<td>CXC-1612</td>
<td>80-110</td>
<td>Quaternary, Powder, most efficient product</td>
</tr>
<tr>
<td>CXC-1615</td>
<td>100-120</td>
<td>Amine, Liquid, 60% in H2O/alcohol</td>
</tr>
<tr>
<td>CXC-1614</td>
<td>100-150</td>
<td>Quaternary, Powder, lowest temperature</td>
</tr>
<tr>
<td>TAG-2678</td>
<td>100-150</td>
<td>Quaternary, Powder</td>
</tr>
<tr>
<td>TAG-2689</td>
<td>130-170</td>
<td>Quaternary, Powder, improved solubility/stability</td>
</tr>
<tr>
<td>TAG-2690</td>
<td>180-220</td>
<td>Quaternary, Powder, highest temperature</td>
</tr>
<tr>
<td>CXC-1613</td>
<td>60-100</td>
<td>Metal, Solvent-based 2K systems</td>
</tr>
<tr>
<td>CXC-1821</td>
<td>80-110</td>
<td>Quaternary, Powder, Non Sb version of 1612</td>
</tr>
<tr>
<td>CXC-1756</td>
<td>110-130</td>
<td>Metal, Liquid, water or solvent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OH # / AN / EW</th>
<th>Viscosity Range, cPs</th>
<th>Tg</th>
<th>Adhesion</th>
<th>Toughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDR-3314</td>
<td>225-245 (OH#)</td>
<td>10,000 - 12,000</td>
<td>High</td>
<td>Excellent</td>
</tr>
<tr>
<td>CDR-3315</td>
<td>132-145 (OH#)</td>
<td>4,000 - 5,000</td>
<td>Low</td>
<td>Good</td>
</tr>
<tr>
<td>CDR-3316</td>
<td>250-270 (OH#)</td>
<td>1,200 - 1,800</td>
<td>Med</td>
<td>Good</td>
</tr>
<tr>
<td>CDR-3441</td>
<td>135 (OH#) / 30 (AN)</td>
<td>40,000 - 60,000</td>
<td>Low</td>
<td>Best</td>
</tr>
<tr>
<td>CDR-3317</td>
<td>340-360 (OH#)</td>
<td>150,000 - 300,000</td>
<td>High</td>
<td>Good</td>
</tr>
<tr>
<td>CDR-3320</td>
<td>190 (EW)</td>
<td>900 - 1,200</td>
<td>N/A</td>
<td>Best</td>
</tr>
</tbody>
</table>

Metal Type

- **Ferrous**
 - **K-PURE CDI Products**: CDI-4301
- **Ferrous & Soft Metals**
 - **K-PURE CDI Products**: CDI-4303, CDI-4302, CDI-3320, CDI-4311
- **Soft Metals**
 - **K-PURE CDI Products**: CDI-4310, CDI-4308
- **Ferrous & Soft Metals**
 - **K-PURE CDI Products**: CDI-4311, CDI-4312
- **Aluminum**
The conditions of your use and application of our products, technical assistance and information (whether verbal, written or by way of product evaluations), including any suggested formulations and recommendations, are beyond our control. Therefore, it is imperative that you test our products, technical assistance and information to determine to your own satisfaction whether they are suitable for your intended uses and applications. Such testing has not necessarily been done by King Industries, Inc. ("King"). The facts, recommendations and suggestions herein stated are believed to be reliable; however, no guaranty or warranty of their accuracy is made. EXCEPT AS STATED, THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS OR OTHERWISE. KING SHALL NOT BE HELD LIABLE FOR SPECIAL, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES. Any statement inconsistent herewith is not authorized and shall not bind King. Nothing herein shall be construed as a recommendation to use any product(s) in conflict with patents covering any material or its use. No license is implied or granted under the claims of any patent. Sales or use of all products are pursuant to Standard Terms and Conditions stated in King sales documents.

References

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Para toluene sulfonic acid</td>
<td>pTSA</td>
</tr>
<tr>
<td>Dodecylbenzene</td>
<td>DDBSA</td>
</tr>
<tr>
<td>Hexafluoroantimonate</td>
<td>SbF₆</td>
</tr>
<tr>
<td>Trifluoroantimonate sulfonic acid</td>
<td>OTf</td>
</tr>
<tr>
<td>Tetrakis (pentafluorophenyl) borate</td>
<td>TPFB</td>
</tr>
<tr>
<td>Acetoacetate</td>
<td>AA</td>
</tr>
</tbody>
</table>